Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Methods Mol Biol ; 2687: 107-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37464166

RESUMO

The determination of the concentration of endocannabinoids and related compounds in human plasma has become a matter of interest due to their implication in physiological processes and, thus, their possible relation with physiological conditions or illnesses. The analysis of these compounds though has to be carefully designed as they are found in very low concentrations, and some of them degrade easily once blood is collected. In this chapter, a simple method based on a liquid-liquid extraction and analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) is described to determine the concentration of eight of the most relevant endocannabinoids in plasma.


Assuntos
Endocanabinoides , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Endocanabinoides/química , Espectrometria de Massas em Tandem/métodos , Extração Líquido-Líquido , Cromatografia Líquida de Alta Pressão/métodos
2.
Talanta ; 257: 124392, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863295

RESUMO

The present study encompasses the development of a fast and reliable analytical method to quantify the main endocannabinoids and some of their conjugated congeners, particularly N-arachidonoyl amino acids, in brain tissue. Samples were homogenized and a micro solid phase extraction (µSPE) procedure was developed for brain homogenate clean-up. Miniaturized SPE was selected as it allowed to work with reduced sample amounts, while maintaining high sensitivity; this last feature was mandatory due to the low concentration of endocannabinoids in biological matrices that makes their determination a challenging analytical task. UHPLC-MS/MS was used for the analysis as it provided a great sensitivity, especially for conjugated forms that were detected by negative ionization. Polarity switching was applied during the run; low limits of quantification were between 0.003 ng g-1 and 0.5 ng g-1. This method provided also low matrix effect (lower than 30%) and good extraction recoveries in the brain. To the best of our knowledge, this is the first time that µSPE is applied on this matrix for this class of compounds. The method was validated according to international guidelines, and then tested on real cerebellum samples from mice, which were sub-chronically treated with URB597, a well-known inhibitor of the fatty acid amide hydrolase.


Assuntos
Endocanabinoides , Espectrometria de Massas em Tandem , Animais , Camundongos , Cromatografia Líquida de Alta Pressão/métodos , Endocanabinoides/química , Espectrometria de Massas em Tandem/métodos , Extração em Fase Sólida/métodos , Encéfalo
3.
Methods Mol Biol ; 2576: 9-19, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152174

RESUMO

Extraction and quantification of endocannabinoids from biological tissues is essential to unravel their changes under physiological and pathophysiological conditions. We describe here an analytical protocol for the extraction of endocannabinoids, anandamide (archidonoyl ethanolamide, AEA) and 2-arachidonoyl glycerol (2-AG), and endocannabinoid-like lipids such as palmitoyl ethanolamide (PEA) and oleoyl ethanolamide (OEA), as well as arachidonic acid (AA) from biological tissues using liquid-liquid extraction method and simultaneous quantification by liquid chromatography multiple reaction monitoring (LC/MRM).


Assuntos
Endocanabinoides , Glicerol , Ácido Araquidônico , Cromatografia Líquida/métodos , Endocanabinoides/química , Extração Líquido-Líquido/métodos
4.
Sci Rep ; 12(1): 17260, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241847

RESUMO

Nanoparticles and nano-delivery systems are constantly being refined and developed for biomedical applications such as imaging, gene therapy, and targeted delivery of drugs. Nanoparticles deliver beneficial effects by both release of their cargo and by liberation of their constitutive structural components. The N-acylethanolamines linoleoyl ethanolamide (LEA) and oleoyl ethanolamide (OEA) both exhibit endocannabinoid-like activity. Here, we report on their ability to form nanoparticles that when conjugated with tissue-specific molecules, are capable of localizing to specific areas of the body and reducing inflammation. The facilitation of pharmacological effects by endocannabinoids at targeted sites provides a novel biocompatible drug delivery system and a therapeutic approach to the treatment, patient management and quality of life, in conditions such as arthritis, epilepsy, and cancer.


Assuntos
Endocanabinoides , Nanopartículas , Endocanabinoides/química , Humanos , Nanopartículas/química , Preparações Farmacêuticas , Qualidade de Vida
5.
Biomed Pharmacother ; 149: 112845, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35339828

RESUMO

There has been a renewed interest in the potential use of psychedelics for the treatment of psychiatric conditions. Nevertheless, little is known about the mechanism of action and molecular pathways influenced by ayahuasca use in humans. Therefore, for the first time, our study aims to investigate the human metabolomics signature after consumption of a psychedelic, ayahuasca, and its connection with both the psychedelic-induced subjective effects and the plasma concentrations of ayahuasca alkaloids. Plasma samples of 23 individuals were collected both before and after ayahuasca consumption. Samples were analysed through targeted metabolomics and further integrated with subjective ratings of the ayahuasca experience (i.e., using the 5-Dimension Altered States of Consciousness Rating Scale [ASC]), and plasma ayahuasca-alkaloids using integrated network analysis. Metabolic pathways enrichment analysis using diffusion algorithms for specific KEGG modules was performed on the metabolic output. Compared to baseline, the consumption of ayahuasca increased N-acyl-ethanolamine endocannabinoids, decreased 2-acyl-glycerol endocannabinoids, and altered several large-neutral amino acids (LNAAs). Integrated network results indicated that most of the LNAAs were inversely associated with 9 out of the 11 subscales of the ASC, except for tryptophan which was positively associated. Several endocannabinoids and hexosylceramides were directly associated with the ayahuasca alkaloids. Enrichment analysis confirmed dysregulation in several pathways involved in neurotransmission such as serotonin and dopamine synthesis. In conclusion, a crosstalk between the circulating LNAAs and the subjective effects is suggested, which is independent of the alkaloid concentrations and provides insights into the specific metabolic fingerprint and mechanism of action underlying ayahuasca experiences.


Assuntos
Aminoácidos Neutros , Banisteriopsis , Endocanabinoides/farmacologia , Alucinógenos , Banisteriopsis/química , Endocanabinoides/química , Alucinógenos/farmacologia , Humanos , Metabolômica
6.
Biochem Biophys Res Commun ; 591: 31-36, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34995983

RESUMO

2-Arachidonoylglycerol (2-AG) is the most potent and abundant endocannabinoid that acts as a full agonist at the cannabinoid 1 (CB1) and 2 (CB2) receptors. It serves as a substrate for several serine hydrolases, including monoacylglycerol lipase (MGL), α/ß hydrolase domain 6 (ABHD6) and fatty acid amide hydrolase (FAAH). However, 2-AG's rapid conversion to 1-AG (the S stereoisomer) and 3-AG (the R stereoisomer) complicates in vivo signaling. Here, we present the interaction profiles of 2-AG and its isomerization products, 1- and 3-AG, with the endocannabinoid MGL, ABHD6 and FAAH enzymes as well as the CB1 receptor. The 1- and 3-AG enantiomers are less prone to isomerization, and their affinities to endocannabinoid enzymes and potencies at CB1 receptor are quite different compared to 2-AG. Although MGL is the principal hydrolytic enzyme of 2-AG, 3-AG (the R isomer) appears to be the best substrate for hMGL. Contrarily, 1-AG (the S isomer) demonstrates the worst substrate profile, indicating that the stereochemistry of 1(3)-monoacylglycerols is very important for MGL enzyme. On the other hand, both 1- and 3-AG (the sn1 monoacylglycerols) are efficiently hydrolyzed by hABHD6 without preference, while 2-AG (the sn2 monoacylglycerol) has the lowest rate of hydrolysis. FAAH, the principal hydrolytic enzyme for arachidonoylethanolamide (anandamide, AEA), catalyzes the hydrolysis of all three isomers with similar efficiencies. In a functional cAMP assay at CB1 receptor, all three isomers behaved as agonists, with 2-AG being the most potent, followed by 3-AG then 1-AG. The presented data provides stereochemical insights to design chemically stable AG analogs with preferential stability against enzymes of interest.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Amidoidrolases/metabolismo , Ácidos Araquidônicos/química , Soluções Tampão , Cromatografia Líquida de Alta Pressão , AMP Cíclico/metabolismo , Endocanabinoides/química , Glicerídeos/química , Células HEK293 , Humanos , Hidrólise , Isomerismo , Cinética , Ligantes , Monoacilglicerol Lipases/metabolismo , Especificidade por Substrato
7.
Med Clin North Am ; 106(1): 131-152, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34823727

RESUMO

Cannabis use in the United States is growing at an unprecedented pace. Most states in the United States have legalized medical cannabis use, and many have legalized nonmedical cannabis use. In this setting, health care professionals will increasingly see more patients who have questions about cannabis use, its utility for medical conditions, and the risks of its use. This narrative review provides an overview of the background, pharmacology, therapeutic use, and potential complications of cannabis.


Assuntos
Cannabis/efeitos adversos , Endocanabinoides/metabolismo , Maconha Medicinal/uso terapêutico , Transtornos Somatoformes/tratamento farmacológico , Adulto , Caquexia/tratamento farmacológico , Endocanabinoides/química , Feminino , Pessoal de Saúde/estatística & dados numéricos , Humanos , Legislação de Medicamentos/estatística & dados numéricos , Masculino , Maconha Medicinal/efeitos adversos , Maconha Medicinal/farmacocinética , Maconha Medicinal/farmacologia , Náusea/tratamento farmacológico , Neurobiologia , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Convulsões/tratamento farmacológico , Índice de Gravidade de Doença , Espasmo/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Estados Unidos/epidemiologia
8.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681877

RESUMO

The activation of the human cannabinoid receptor type II (CB2R) is known to mediate analgesic and anti-inflammatory processes without the central adverse effects related to cannabinoid receptor type I (CB1R). In this work we describe the synthesis and evaluation of a novel series of N-aryl-2-pyridone-3-carboxamide derivatives tested as human cannabinoid receptor type II (CB2R) agonists. Different cycloalkanes linked to the N-aryl pyridone by an amide group displayed CB2R agonist activity as determined by intracellular [cAMP] levels. The most promising compound 8d exhibited a non-toxic profile and similar potency (EC50 = 112 nM) to endogenous agonists Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) providing new information for the development of small molecules activating CB2R. Molecular docking studies showed a binding pose consistent with two structurally different agonists WIN-55212-2 and AM12033 and suggested structural requirements on the pyridone substituents that can satisfy the orthosteric pocket and induce an agonist response. Our results provide additional evidence to support the 2-pyridone ring as a suitable scaffold for the design of CB2R agonists and represent a starting point for further optimization and development of novel compounds for the treatment of pain and inflammation.


Assuntos
Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Piridonas/química , Receptor CB2 de Canabinoide/agonistas , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/farmacologia , Benzoxazinas/química , Benzoxazinas/farmacologia , Sítios de Ligação , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Endocanabinoides/química , Endocanabinoides/farmacologia , Glicerídeos/química , Glicerídeos/farmacologia , Células HL-60 , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Morfolinas/química , Morfolinas/farmacologia , Naftalenos/química , Naftalenos/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Piridonas/farmacologia , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
9.
PLoS One ; 16(6): e0229879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34181638

RESUMO

Δ9-tetrahydrocannabinol (Δ9-THC), the main active ingredient of Cannabis sativa (marijuana), interacts with the human brain cannabinoid (CB1) receptor and mimics pharmacological effects of endocannabinoids (eCBs) like N-arachidonylethanolamide (AEA). Due to its flexible nature of AEA structure with more than 15 rotatable bonds, establishing its binding mode to the CB1 receptor is elusive. The aim of the present study was to explore possible binding conformations of AEA within the binding pocket of the CB1 receptor confirmed in the recently available X-ray crystal structures of the CB1 receptor and predict essential AEA binding domains. We performed long time molecular dynamics (MD) simulations of plausible AEA docking poses until its receptor binding interactions became optimally established. Our simulation results revealed that AEA favors to bind to the hydrophobic channel (HC) of the CB1 receptor, suggesting that HC holds essential significance in AEA binding to the CB1 receptor. Our results also suggest that the Helix 2 (H2)/H3 region of the CB1 receptor is an AEA binding subsite privileged over the H7 region.


Assuntos
Ácidos Araquidônicos/química , Endocanabinoides/química , Alcamidas Poli-Insaturadas/química , Receptor CB1 de Canabinoide/ultraestrutura , Animais , Ácidos Araquidônicos/metabolismo , Encéfalo/metabolismo , Moduladores de Receptores de Canabinoides/química , Canabinoides/farmacologia , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Alcamidas Poli-Insaturadas/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo
10.
Molecules ; 26(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070869

RESUMO

Monoacylglycerol lipase (MAGL) is a key enzyme in the human endocannabinoid system. It is also the main enzyme responsible for the conversion of 2-arachidonoyl glycerol (2-AG) to arachidonic acid (AA), a precursor of prostaglandin synthesis. The inhibition of MAGL activity would be beneficial for the treatment of a wide range of diseases, such as inflammation, neurodegeneration, metabolic disorders and cancer. Here, the author reports the pharmacological evaluation of new disulfiram derivatives as potent inhibitors of MAGL. These analogues displayed high inhibition selectivity over fatty acid amide hydrolase (FAAH), another endocannabinoid-hydrolyzing enzyme. In particular, compound 2i inhibited MAGL in the low micromolar range. However, it did not show any inhibitory activity against FAAH.


Assuntos
Dissulfiram/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/química , Amidoidrolases/química , Ácidos Araquidônicos/química , Carbamatos/farmacologia , Dissulfiram/análogos & derivados , Endocanabinoides/química , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Glicerídeos/química , Humanos , Hidrólise , Monoglicerídeos/química , Relação Estrutura-Atividade
11.
Bioorg Chem ; 113: 105014, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34077840

RESUMO

The biocatalytic epoxidation of ethanolamides of ω-3 fatty acids EPA and DHA, regarded as biologically active ω-3 endocannabinoids, in the presence of a peroxygenase-containing preparation from oat flour was investigated. Good regio- and steroselectivity toward the formation of the epoxide on the terminal double bond in the chain was observed with both these fatty acid derivatives and chiral monoepoxides 1 or 2 in 74% optical purity and 51-53% yields were isolated and spectroscopically characterized. The use of acetone as cosolvent in the reaction medium allowed to increase the concentration of starting substrates up to 40 mM and to further improve the selectivity in the epoxidation of DHA-EA. Due to the easy availability of the enzymatic preparation, the method offers a valuable strategy for the access to oxyfunctionalized derivatives of fatty acids.


Assuntos
Avena/enzimologia , Endocanabinoides/química , Compostos de Epóxi/metabolismo , Oxigenases de Função Mista/metabolismo , Biocatálise , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/biossíntese , Ácido Eicosapentaenoico/química , Endocanabinoides/biossíntese , Compostos de Epóxi/química , Farinha/análise , Cinética , Estereoisomerismo
12.
Nutrients ; 13(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916974

RESUMO

Gut-brain signaling controls food intake and energy homeostasis, and its activity is thought to be dysregulated in obesity. We will explore new studies that suggest the endocannabinoid (eCB) system in the upper gastrointestinal tract plays an important role in controlling gut-brain neurotransmission carried by the vagus nerve and the intake of palatable food and other reinforcers. A focus will be on studies that reveal both indirect and direct interactions between eCB signaling and vagal afferent neurons. These investigations identify (i) an indirect mechanism that controls nutrient-induced release of peptides from the gut epithelium that directly interact with corresponding receptors on vagal afferent neurons, and (ii) a direct mechanism via interactions between eCBs and cannabinoid receptors expressed on vagal afferent neurons. Moreover, the impact of diet-induced obesity on these pathways will be considered.


Assuntos
Encéfalo/fisiologia , Ingestão de Alimentos/fisiologia , Endocanabinoides/metabolismo , Trato Gastrointestinal/fisiologia , Obesidade/fisiopatologia , Animais , Endocanabinoides/química , Humanos , Transmissão Sináptica/fisiologia
13.
Mol Biol Rep ; 48(4): 3665-3680, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33909195

RESUMO

The discovery of endogenous cannabinoid receptors CB1 and CB2 and their endogenous ligands has generated interest in the endocannabinoid system and has contributed to the understanding of the role of the endocannabinoid system. Its role in the normal physiology of the body and its implication in pathological states such as cardiovascular diseases, neoplasm, depression and pain have been subjects of scientific interest. In this review the authors focus on the endogenous cannabinoids, and the critical role of cannabinoid receptor signaling in neurodegeneration and other inflammatory responses such as gut, joint and skin inflammation. This review also discusses the potential of endocannabinoid pathways as drug targets in the amelioration of some inflammatory conditions. Though the exact role of the endocannabinoid system is not fully understood, the evidence found much clearly points to a great potential in exploiting both its central and peripheral pathways in disease management. Cannabinoid therapy has proven promising in several preclinical and clinical trials.


Assuntos
Encéfalo/metabolismo , Citocinas/metabolismo , Endocanabinoides/metabolismo , Mucosa Intestinal/metabolismo , Articulações/metabolismo , Pele/metabolismo , Animais , Endocanabinoides/química , Humanos , Receptores de Canabinoides/classificação , Receptores de Canabinoides/metabolismo , Transdução de Sinais
14.
FASEB J ; 35(4): e21411, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749884

RESUMO

Pain is one of the cardinal signs accompanying inflammation. The prostaglandins (PGs), synthetized from arachidonic acid by cyclooxygenase (COX)-2, are major bioactive lipids implicated in inflammation and pain. However, COX-2 is also able to metabolize other lipids, including the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA), to give glycerol ester (PG-G) and ethanolamide (PG-EA) derivatives of the PGs. Consequently, COX-2 can be considered as a hub not only controlling PG synthesis, but also PG-G and PG-EA synthesis. As they were more recently characterized, these endocannabinoid metabolites are less studied in nociception compared to PGs. Interestingly R-profens, previously considered as inactive enantiomers of nonsteroidal anti-inflammatory drugs (NSAIDs), are substrate-selective COX inhibitors. Indeed, R-flurbiprofen can selectively block PG-G and PG-EA production, without affecting PG synthesis from COX-2. Therefore, we compared the effect of R-flurbiprofen and S-flurbiprofen in models of inflammatory pain triggered by local administration of lipopolysaccharides (LPS) and carrageenan in mice. Remarkably, the effects of flurbiprofen enantiomers on mechanical hyperalgesia seem to depend on (i) the inflammatory stimuli, (ii) the route of administration, and (iii) the timing of administration. We also assessed the effect of administration of the PG-Gs, PG-EAs, and PGs on LPS-induced mechanical hyperalgesia. Our data support the interest of studying the nonhydrolytic endocannabinoid metabolism in the context of inflammatory pain.


Assuntos
Endocanabinoides/farmacologia , Flurbiprofeno/farmacologia , Inflamação/tratamento farmacológico , Dor/induzido quimicamente , Dor/tratamento farmacológico , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Capsaicina/toxicidade , Carragenina/toxicidade , Endocanabinoides/química , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Camundongos
15.
Nat Commun ; 12(1): 926, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568652

RESUMO

The endocannabinoid system is a promising target to mitigate pain as the endocannabinoids are endogenous ligands of the pain-mediating receptors-cannabinoid receptors 1 and 2 (CB1 and CB2) and TRPV1. Herein, we report on a class of lipids formed by the epoxidation of N-arachidonoyl-dopamine (NADA) and N-arachidonoyl-serotonin (NA5HT) by epoxygenases. EpoNADA and epoNA5HT are dual-functional rheostat modulators of the endocannabinoid-TRPV1 axis. EpoNADA and epoNA5HT are stronger modulators of TRPV1 than either NADA or NA5HT, and epoNA5HT displays a significantly stronger inhibition on TRPV1-mediated responses in primary afferent neurons. Moreover, epoNA5HT is a full CB1 agonist. These epoxides reduce the pro-inflammatory biomarkers IL-6, IL-1ß, TNF-α and nitrous oxide and raise anti-inflammatory IL-10 cytokine in activated microglial cells. The epoxides are spontaneously generated by activated microglia cells and their formation is potentiated in the presence of anandamide. Detailed kinetics and molecular dynamics simulation studies provide evidence for this potentiation using the epoxygenase human CYP2J2. Taken together, inflammation leads to an increase in the metabolism of NADA, NA5HT and other eCBs by epoxygenases to form the corresponding epoxides. The epoxide metabolites are bioactive lipids that are potent, multi-faceted molecules, capable of influencing the activity of CB1, CB2 and TRPV1 receptors.


Assuntos
Anti-Inflamatórios/administração & dosagem , Dopamina/administração & dosagem , Dor/tratamento farmacológico , Receptor CB1 de Canabinoide/imunologia , Receptor CB2 de Canabinoide/imunologia , Serotonina/administração & dosagem , Animais , Anti-Inflamatórios/química , Dopamina/química , Endocanabinoides/administração & dosagem , Endocanabinoides/química , Compostos de Epóxi/química , Feminino , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nitroso/imunologia , Dor/genética , Dor/imunologia , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Serotonina/química , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/imunologia
16.
Physiol Biochem Zool ; 94(2): 83-98, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33434116

RESUMO

AbstractQuantifying physiological challenges has gained increasing importance in evolutionary biology, behavioral physiology, and conservation. One matrix that is particularly useful for obtaining long-term records of physiological changes in mammals is hair. Potential markers are components of the endocannabinoid (EC) system, which regulates homeostasis of the brain as well as the endocrine and immune systems. Here, we present results from the first study to measure ECs (anandamide [AEA], 2-archidonyl glycerol [2-AG]) and EC-like compounds (N-palmitoylethanolamine [PEA], N-oleoylethanolamine [OEA], N-stearoylethanolamine [SEA]) in the hair of a nonhuman primate. We found that AEA, SEA, PEA, and OEA can be reliably measured in hair samples. When comparing the measurements of hair from different body parts, we found that variations of some analytes suggest that hair location is likely to affect results. For changes in health status, measurements of ECs and EC-like compounds reflected differences at both intra- and interindividual levels. We concluded that the EC system potentially provides novel tools to assess well-being, health status, and metabolic stress-not only in the hair of humans but also in that of domestic and wild animals. Measuring changes in ECs and EC-like compounds may improve the long-term monitoring of health status in captive and wild primates and may serve as a useful measure in animal welfare programs.


Assuntos
Endocanabinoides/metabolismo , Cabelo/química , Homeostase/fisiologia , Pan paniscus/fisiologia , Animais , Biomarcadores/química , Endocanabinoides/química , Feminino , Cabelo/fisiologia , Masculino
17.
Artigo em Inglês | MEDLINE | ID: mdl-33385936

RESUMO

Oleoylethanolamide (OEA), a well-known satiety factor, is produced during feeding in the proximal intestine. Enterocytes sense oleic acid in dietary fat via CD36 and convert it to OEA through NAPE-PLD dependent or independent pathways. The satiety function of OEA is known to involve peroxisome proliferator-activated receptor type-α (PPAR-α). OEA stimulates afferent sensory fibers (possibly those of the vagus nerve) and provoke the recruitment of feeding-controlling circuits in the brain that use oxytocin and histamine as neurotransmitters for regulating satiety. Dysfunction of OEA synthesis by high-fat feeding might contribute to increased weight and obesity. Here, we describe the roles played by OEA in the regulation of energy metabolism and food intake by introducing our preliminary data regarding this lipid mediator, and we briefly outline the biosynthesis and deactivation of OEA.


Assuntos
Gorduras na Dieta/administração & dosagem , Endocanabinoides/química , Ácido Oleico/administração & dosagem , Ácidos Oleicos/química , Animais , Antígenos CD36/metabolismo , Gorduras na Dieta/farmacocinética , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Enterócitos/química , Enterócitos/metabolismo , Humanos , Ácido Oleico/farmacocinética , PPAR alfa/metabolismo
18.
Adv Med Sci ; 66(1): 72-80, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388673

RESUMO

PURPOSE: Hypertensive lesions induce alterations at hemodynamic, peripheral, and central levels. Anandamide (N-arachidonoylethanolamine; AEA) protects neurons from inflammatory damage, but its free administration may cause central adverse effects. AEA controlled release by nanoformulations could reduce/eliminate its side effects. The present study aimed to evaluate the effects of nanoformulated AEA (nf-AEA) on systolic blood pressure (SBP), behavior, and central/peripheral inflammatory, oxidative, and apoptotic state in spontaneously hypertensive rats (SHR). MATERIALS/METHODS: Male rats were used, both Wistar Kyoto (WKY) and SHR (n â€‹= â€‹10 per group), with/without treatment with nf-AEA (obtained by electrospraying) at a weekly dose of 5 â€‹mg/kg IP for 4 weeks. SBP was measured and behavioral tests were performed. Inflammatory/oxidative markers were quantified at the central (brain cortex) and peripheral (serum) level. RESULTS: SHR showed hyperactivity, low anxiety, and high concentrations of central/peripheral inflammatory/oxidative markers, also higher apoptosis of brain cortical cells compared to WKY. As opposed to this group, treatment with nf-AEA in SHR significantly reduced SBP, peripheral/central inflammatory/oxidative makers, and central apoptosis. Nf-AEA also increased neuroprotective mechanisms mediated by intracellular heat shock protein 70 (Hsp70), which were attenuated in untreated SHR. Additionally, nf-AEA reversed the abnormal behaviors observed in SHR without producing central adverse effects. CONCLUSIONS: Our results suggest protective properties of nf-AEA, both peripherally and centrally, through a signaling pathway that would involve the type I angiotensin II receptor, Wilms tumor transcription factor 1, Hsp70, and iNOS. Considering non-nf-AEA limitations, this nanoformulation could contribute to the development of new antihypertensive and behavioral disorder treatments associated with neuroinflammation.


Assuntos
Anti-Hipertensivos/farmacologia , Ácidos Araquidônicos/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Endocanabinoides/farmacologia , Hemodinâmica , Hipertensão/tratamento farmacológico , Nanopartículas/química , Sistema Nervoso Periférico/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/química , Ácidos Araquidônicos/administração & dosagem , Ácidos Araquidônicos/química , Pressão Sanguínea , Endocanabinoides/administração & dosagem , Endocanabinoides/química , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Nanopartículas/administração & dosagem , Estresse Oxidativo , Alcamidas Poli-Insaturadas/administração & dosagem , Alcamidas Poli-Insaturadas/química , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais
19.
Int J Mol Med ; 46(5): 1827-1837, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33000188

RESUMO

Oxidative stress is one of the main pathogenic factors of neurodegenerative diseases. As the ligand of cannabinoid type 1 (CB1) and 2 (CB2) receptors, anandamide (AEA) exerts benign antioxidant activities. However, the instability of AEA results in low levels in vivo, which limit its further application. Based on the structure of AEA, N­linoleyltyrosine (NITyr) was synthesized in our laboratory and was hypothesized to possess a similar function to that of AEA. To the best of our knowledge, the present study demonstrates for the first time, the activities and mechanisms of NITyr. NITyr treatment attenuated hydrogen peroxide (H2O2)­induced cytotoxicity, with the most promiment effect observed at 1 µmol/l. Treatment with NITyr also suppressed the H2O2­induced elevation of reactive oxygen species (ROS) and enhanced the expression of the autophagy­related proteins, LC3­II, beclin­1, ATG 5 and ATG13. The autophagic inhibitor, 3­methyladenine, reversed the effects of NITyr on ROS levels and cellular viability. Furthermore, AM251, a CB1 receptor antagonist, but not AM630 (a CB2 receptor antagonist), diminished the effects of NITyr on cell viability, ROS generation and autophagy­related protein expression. However, NITyr increased the protein expression of both the CB1 and CB2 receptors. Therefore, NITyr was concluded to protect PC12 cells against H2O2­induced oxidative injury by inducing autophagy, a process which may involve the CB1 receptor.


Assuntos
Autofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Tirosina/análogos & derivados , Tirosina/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Endocanabinoides/química , Endocanabinoides/farmacologia , Peróxido de Hidrogênio/toxicidade , Indóis/farmacologia , Células PC12 , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Pirazóis/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Tirosina/química
20.
Cell ; 183(3): 650-665.e15, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031742

RESUMO

Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.


Assuntos
Endocanabinoides/metabolismo , Enterobacteriaceae/patogenicidade , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Citrobacter rodentium/patogenicidade , Colo/microbiologia , Colo/patologia , Endocanabinoides/química , Infecções por Enterobacteriaceae/microbiologia , Feminino , Microbioma Gastrointestinal , Glicerídeos/química , Glicerídeos/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/metabolismo , Salmonella/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA